![]() 光空間伝送通信装置
专利摘要:
本体(6)と、第1の位置(C)で本体に固定される少なくとも1つのレンズ(9)と、レンズまで所定の距離(Zbc)にある第2の位置(B)で光ファイバ(3)用のコネクタ(11)を取り付ける手段とを備えたFSO通信装置(4)であって、レンズは自由空間を経由してFSO通信装置へ送信された光束(8)を光ファイバ内へ集束するように設計されていることを特徴とするFSO通信装置(4)。コネクタを取り付ける手段は、本体の膨張係数より大きな膨張係数をもつ温度補償デバイス(10)であり、温度補償デバイスは本体に第3の位置(A)で固定され、温度補償デバイスが温度変化によって伸縮することを可能とする自由端を有することを特徴とし、第2の位置は第3の位置と第1の位置の間に位置することを特徴とする。 公开号:JP2011508541A 申请号:JP2010539971 申请日:2007-12-27 公开日:2011-03-10 发明作者:デル;ウェイド,;ジーン,;ピエーレ ヴォン;コルベロ,;クライトン ペレイラ;コルデイロ,;マウロ,;セザール レベッロ 申请人:エリクソン テレコムニカソンイス ソシエダット アノニマEricsson Telecomunicacoes S.A.; IPC主号:H04B10-10
专利说明:
[0001] 本発明は、一般的には、FSOC(自由空間光通信)通信装置またはFSOL(自由空間光リンク)通信装置と呼ぶこともできるFSO(自由空間光学)通信装置に関するものである。] 背景技術 [0002] FSO、FSOLまたはFSOCシステムは、現状技術の自由空間無線周波数システムと比べると、広帯域など、いくつかの利点を提供する。FSO通信システムは、無線システムと比べると、とりわけ、利用できる電磁波スペクトルの自由度、および無線周波数干渉を全く受けないことで優れているため、高速短距離伝送の多くの新しいプロジェクトにおいて優れた選択肢を与えるものである。反面、FSOシステムは、かすみ、霧および屈折率擾乱のような雰囲気条件に対してより敏感である。これらの条件は、無線波に比べて、より大きな強度フェージングを受信光信号に引き起こす。] [0003] 例えば、ビルの揺れ、地震活動、FSO通信装置上への雹や鳥の落下によって引き起こされる、通信中にある2つのFSO通信装置間のアライメント(位置)ずれは、FSOシステムに関するもう一つの問題点である。この問題は、US−7120363−B2で取り上げられている。当文献によれば、2つのFSO通信装置の自動アライメント調整(位置合わせ)方法が開示されている。FSO通信装置は、光信号を送信し、FSO通信装置に結合され具備された光ファイバから光信号を受信するための、例えば、光信号発生器、光信号検出器およびレンズのような光学素子を備える。光学素子は、リニアモータと制御装置の助けによって光学素子の方位角と仰角の両方の調節ができるようなジンバルすなわち光学ケージの中に固定される。] 先行技術 [0004] 米国特許第US7120363B2号明細書] 発明が解決しようとする課題 [0005] しかしながら、FSOシステムにはさらなる問題が存在する。その1つは、FSO通信装置のようなFSOデバイスの設置された環境における温度変動によって引き起こされる。光ファイバでは、コアの直径が通常は数ミクロンであり、それが比較的大面積のレンズにより捕捉された集束エネルギーの全てを受光しなければならないということを考慮すると、FSO通信装置のようなレンズと光ファイバを用いることに基づく完全な光通信デバイスの製作は複雑である。レンズと光ファイバの間の距離は非常に微妙であり、十分なパワー・レベルを確保するためにはリンクの置かれたいかなる条件においても一定に保たれることが理想である。FSO通信装置は、置かれた場所による気象条件の結果、熱せられたり冷やされたりするので、FSO通信装置内の部品が伸縮し上記微妙な距離が変わってしまうので、これは実際には達成するのが困難である。] [0006] 本発明の目的は、FSO通信装置に影響を及ぼす温度変動によって引き起こされる上記の問題を少なくとも低減することである。] 課題を解決するための手段 [0007] 本発明は、本体と、第1の位置で本体に固定される少なくとも1つのレンズと、レンズから所定の距離にある第2の位置で光ファイバ用のコネクタを取り付ける手段とを備えたFSO通信装置であって、レンズは自由空間を経てFSO通信装置へ送信されてきた光束を光ファイバへ集束するように設計されていることを特徴とするFSO通信装置に関係する。コネクタを取り付ける手段は、本体の膨張係数よりも大きな膨張係数をもつ温度補償デバイスである。温度補償デバイスは、第3の位置で本体に固定され、温度補償デバイスが温度変化に従って伸縮するのを可能とする自由端を有する。第2の位置は第3の位置と第1の位置の間に位置する。これにより、雰囲気温度の変化のために、本体の長さおよびそれに伴うレンズの位置が第3の位置に対して変化しても、第1と第2の位置との間における対応する距離の変化は、本体にコネクタを取り付ける手段が本体と同じ材料でできている場合よりも小さくなるということが達成される。このようにして、雰囲気温度変化に起因するレンズとコネクタ間の距離の変化は、少なくともいくらかは補償される。] [0008] 1つの実施形態によれば、本体は管状であり、レンズと温度補償デバイスは本体の中に取り付けられる。これにより、本体はレンズと温度補償デバイスを、例えば、汚染から保護し、同時に小型のFSO通信装置を提供することが達成される。] [0009] このような実施形態によれば、温度補償デバイスは、管状であり、本体の内壁よりも小さな直径を有する一般的な円筒形の外装面と温度補償デバイスの内部にコネクタ用の接合部とを備えた一体部品である。これにより、温度補償デバイスの製造は比較的簡単になり、また、コネクタが本体内部の温度補償デバイス内に設置され、コネクタが、例えば、降雨から光ファイバの端部をよりよく保護することができる、ということが達成される。] [0010] 外装面は、O−リングを保持するための少なくとも1つの外装面の円周方向に設けられた円周溝を備えてもよい。これにより、温度補償デバイスの直径が本体の内壁の直径よりも小さいので、膨張または収縮時に温度補償デバイスの自由端のより正確な案内が達成される。] [0011] FSO通信装置は、FSO通信装置の方向を調節するための手動式微調整機構を備えてもよい。これにより、FSO通信装置がすでにアンカーサポート(固定用支持台)に取り付けられていても、FSO通信装置の位置合わせは手動で調整することができるようになる。また、自動制御式調整機構の代わりに手動式微調整機構を持つことによって高価な電気モータおよび電子制御ユニットの必要性を回避できる。] [0012] FSO通信装置は、レンズを降雨から少なくとも部分的に保護するように設計された保護デバイスを備えてもよい。これにより、FSO通信装置の保守は、レンズが降雨に晒される場合に比べて頻繁に行う必要がなくなるようになる。] [0013] FSO通信装置は、本体上に望遠照準器搭載用レールを備えてもよい。これにより、人がFSO通信装置を、例えば、対向するFSO通信装置と位置合わせするのを助けるために、望遠照準器をFSO通信装置上に搭載することができるようになる。] [0014] 本体はアルミニウム合金で作られ、温度補償デバイスは重合体材料で作られていてもよい。より具体的には、本体は6000番台のアルミニウム合金で作られ、温度補償デバイスはポリプロピレンで作られていてもよい。より具体的には、本体はアルミニウム合金6061で作られ、温度補償デバイスはポリプロピレン共重合体で作られてもよい。これによって、温度変化に対するよりよい補償が可能な軽量・安価なFSO通信装置ができる。] [0015] 本体と温度補償デバイスの膨張係数の比は、第3の位置から第2の位置までの距離と第3の位置から第1の位置までの距離との比とほぼ同じであってもよい。これにより、少なくとも本体と温度補償デバイスの膨張係数がそれぞれほぼ一定である温度範囲においては、レンズと光ファイバ間の距離は雰囲気温度が変わってもほぼ維持することができる。] [0016] FSO通信装置はパッシブ(受動)型であってよい。それ故に、2、3の部品しか持たず、複雑な電子回路を必要としない安価なFSO通信装置が実現可能となる。] 図面の簡単な説明 [0017] 本発明の特徴および目的、利点、効果は、本発明の実施形態によるFSOシステムとFSO通信装置に関する以下の詳細説明を付属の図面と合わせて読むことにより、より容易に理解されよう。 FSOシステムの実施形態を概略的に示す図である。 本発明によるFSO通信装置の実施形態の切断図である。 FSO通信装置の実施形態の搭載用支持台を示す図である。 温度補償デバイスの実施形態を示す図である。 温度補償デバイスの実施形態の長手方向における断面図である。 本体の実施形態と温度補償デバイスの実施形態の断面図である。 微調整機構の実施形態を示す透視図である。 FSO通信装置の実施形態の透視図と部分切断図である。 保護デバイスの実施形態を示す図である。 固定用支持台上に搭載されたFSO通信装置の実施形態の透視図である。 本発明による方法を概略的に示す図である。] 実施例 [0018] 本発明は、いろいろな変形と代替の構成を含むが、本発明の実施形態は図面に示され、以下に詳細に説明される。しかしながら、特定の記述と図面は、本発明を開示される特定の形態に制限しようとするものではないと理解すべきである。それどころか、請求される本発明の範囲は、付属の請求項に表現された本発明の精神と技術範囲の範疇である全ての変形及び代替の構成を含むものと意図されている。] [0019] 図1は、例えば、イーサネット、高速イーサネット、ギガビット・イーサネット、IEEE802.11標準およびFDDI(光ファイバ分散データ・インタフェース)に基づく第1のLAN(構内通信網)1のデータが、少なくとも1つの通信装置・デバイス2を経由して天井まで、以下の記述では第1の光ファイバと呼ばれる光ファイバ3によって送信されている状況にあるFSOシステムの基本原理の例を示す。データは、次に、以下の記述では第1のFSO通信装置と呼ばれるFSO通信装置4によって第1のビルディングP1から、対応する、対向する第2のFSO通信装置4aへ送信される。第2のFSO通信装置4aは、第2のビルディングP2上またはその内部に位置する。第1のFSO通信装置からの送信は、光の波長で放出される電磁波を通して、ビーム導波路を介することなく空気を通して光信号として伝搬される。このようにして、第1と第2のFSO通信装置の間に物理的に接触することのない光リンク5が形成される。第2のFSO通信装置4aは、光信号を(不図示の)第2のLANへ第2の光ファイバ3aを経由して送信する。この例はFSO通信装置を含むので、第1のFSO通信装置をより詳細に示している図2に示すように、通信は双方向で行うことができる。LANに接続される代わりに、光ファイバ3および3aは、他の種類のネットワーク、例えば、ATM(非同期転送モード)および/またはSONET/SDS(同期光ネットワーク/SONETディレクトリ・サービス)、または、FSO技術に用いられている他の全てのプロトコルを用いたWAN(広域通信網)に接続されてもよいものと理解されたい。] 図1 図2 [0020] FSO通信装置によって送信される典型的な波長は、赤外光波長であり、信号を送信するため、すなわち非可視の、狭くて方向性を持った光のビームを発生する。光信号は、レーザ(輻射の誘導放出による光の増幅)またはLED(発光ダイオード)システムによって発生することができ、発生した光は、人や動物の視覚を傷付けることのないように国際安全基準に適切に従っているべきものである。いくつかの特定の波長は光通信によく用いられるものであり、850nm、1330nmまたは1550nm付近の波長である。しかしながら、本発明の範囲内に含まれる光信号の波長は、赤外、可視、及び紫外の波長を含む。] [0021] 図2に示されたFSO通信装置は、第1のFSO通信装置の実施形態であるが、第2のFSO通信装置4aは第1のFSO通信装置と同じように設計されるのが適当である。FSO通信装置は、受動的で、安価で、設置するのが容易な、雰囲気温度変動に対してより強固なFSO通信システム内のユニットとして設計される。この実施形態では、第1のFSO通信装置は、円筒状の内壁44と円筒状の外壁とを持つ管状の本体6と、円筒状の内壁および外壁をもつ管状の筐体7とを備える。管状の本体6は、この実施形態では筐体7の先端部にある、管状の本体6と筐体7との間の2軸のジンバル装置40によって筐体7の内部に吊るされている。図2では、ほぼ平行な光線8は、光の波長領域において電磁波の伝搬方向におけるエネルギー伝送を概略的に示している。第2のFSO通信装置4aによって送信された光ビームが管状の本体6内に搭載されたレンズ9に到達する。レンズ9は平行光線8を集束し、その結果、光線は第1の光ファイバのコアに達する。なお、第1の光ファイバは、受動性の温度補償デバイス10の中心線に沿って固定されている。また、第1の光ファイバは、第1の光ファイバを第1のFSO通信装置にはめ込むためのコネクタ11の助けを借りて軸合わせされている。これ以後は、光線8からのエネルギーが第1のLAN1の通信装置・デバイス2に送信され、より長い到達距離または視界外の距離への到達を目的とする電気光変換、光増幅、または信号再生を行うことができる。レンズ9による光線8の集束の結果、光線8は、既知の距離に直径数ミクロンで、第1の光ファイバのコアの寸法とほぼ同じかそれ以下の面積を持つ「点」を形成する。ここでファイバのコアは、温度補償デバイス10が提供する支持装置の助けを借りて、まさに同じその既知の距離に正確に位置付けられ調整されている。図示の実施形態はレンズ9を1つだけ備えているが、本発明の他の実施形態は、光線を集束するために複数のレンズ9を備えてもよい。] 図2 [0022] 図3は、固定および搭載用の支持台12が第1のFSO通信装置を、三脚または固定の円筒状あるいは長方形の支柱のような固定構造または固定用支持台13(図10を参照)に搭載するときに、第1のFSO通信装置に行う位置合わせ調節の簡単さと実用性とを示している。搭載用支持台12は、比較的軽くし、また作りやすくするために、ここでは基本的にはL字型であるが、搭載用支持台12の強靭性を増すために補強部品14を備えてもよい。第1のクランプ(留め金)15の組は、ここではまっすぐな脚と円形の中心部をもつ2つのU字型の留め金の形をしており、第1のFSO通信装置を搭載用支持台12上へ固定するために用いられる。U字型をした第3の留め金16は、搭載用支持台12を固定構造または固定用支持台13の周りに固定して調節することが便利にできるように用いられる。これにより、第1のFSO通信装置は、対向する第2のFSO通信装置4aに対して簡単に手動で調節することできる。例えば、第1のFSO通信装置を直接、搭載用支持台12に固定するなどにより、第1のFSO通信装置を搭載用支持台12に固定するために、搭載用支持台12は、U字型留め金15の第1の組を受け入れるための貫通孔が備わった第1の支持面17を含む。搭載用支持台12は、また、第1の支持面17に垂直な第2の支持面18を備える。第2の支持面18は、搭載用支持台12を固定構造又は固定用支持台13に固定するために第3の留め金16を挿入することができる貫通孔と細長くかつ湾曲した円弧状の貫通溝19とが備わっている。第1の支持面17および第2の支持面18のそれぞれの反対側にある他の面上でナットと係合するために、全てのU字型留め金の脚はここを貫いている。貫通溝19は、第1のFSO通信装置の仰角を容易かつ様々に調節できるようにしている。一方で、固定用支持台13は、円筒状であれば、第1のFSO通信装置を固定用支持台13の周りで水平面内の任意の位置に回転して固定できる。搭載用支持台12は、このように、方位角と仰角において大いに満足できる角度調節を可能にする。代替の実施形態では貫通溝19の代わりに複数の貫通孔が備えられてもよいが、それはステップ・バイ・ステップ(一段ごと)での調整になるだけであろう。] 図10 図3 [0023] 図4は、温度補償デバイス10の実施形態をより詳しく示す。膨張は、第1のFSO通信装置がその設置後に晒される温度差によって引き起こされるが、この温度差は、気候と気象の影響および人為的な原因で引き起こされる。温度補償デバイス10は、ここでは一般的には円筒状の外装面20と温度補償デバイス10の長手軸に関して対称で同心円の貫通孔とを有するポリマー材料による一体成形物であるが、本発明はこれにのみ限定されることはない。円筒状の外装面20の直径は、本体6の内壁44の直径よりも小さく、それゆえ、温度補償デバイス10が本体6に適正に設置されると、温度補償デバイス10と本体6との間に小さな空隙が作られる。貫通孔を規定する温度補償デバイス10の内面の形状は、温度補償デバイス10の固定端である第1の端面21から、温度補償デバイス10内に第1の光ファイバ用のコネクタ11を挿入し設置することができるように設計されている。温度補償デバイス10が本体6内に設置されたときは、第1の端面21は、第1のFSO通信装置における裏端面の方向に向かっている。温度補償デバイス10の第2の端面(以後自由端23と呼ぶ。)から或る一定の距離でコネクタ11を停止させるために、貫通孔の半径は徐々に変化しており、その内面の一部が、コネクタ11用の接合部22(図5を参照)として形成されている。それゆえ、この内面は温度補償デバイス10の長手方向に垂直である。レンズ9から第1の光ファイバへの光ビームの入り口および第1の光ファイバからレンズ9への光ビームの出口のための、同心円で円錐台形状をした開口24も、貫通孔の一部であり、温度補償デバイス10の自由端23に位置していて、開口24の最大となる断面は自由端23と一致している。接合部22に向かうコネクタ11の長手方向にねじ穴を設け、自由端23と接合部22との間の貫通孔25に対応させることによって、コネクタ11は、温度補償デバイス10により確実に固定される。それゆえ、ねじは自由端側から貫通孔25に導入され、コネクタ11のねじ穴にねじ止めされ、コネクタ11が温度補償デバイス10から引き抜かれるのを防止する。外装面は、温度補償デバイス10の自由端23の近くに2つの平行な円周溝26を備える。本体6内で伸縮するときに温度補償デバイス10の案内をよくし、位置を安定にするために、溝26は、例えば、ゴムで形成された2つのO−リング27(図6を参照)を収容するように形成される。第1の端面21の比較的近くに少なくとも2つのねじ穴28があり、温度補償デバイス10の対称軸/長手軸に向かって半径方向内側に伸びている。] 図4 図5 図6 [0024] 図5は、温度補償デバイス10の断面を示し、図6は、本体6内に設置された温度補償デバイス10の断面図である。これらの図に示すように、温度補償デバイス10は、第1の端面21の近く、より正確には、固定手段、ここではねじの形態であるが、その固定手段が図6に示した第3の位置Aにある本体6中の長く伸びた孔28tと温度補償デバイス10中の対応するねじ穴28に挿入される位置でだけ固定されている。自由端23は、FSO通信装置の長手方向には完全に自由であり、温度補償デバイス10は、位置合わせされた状態を崩すことなく本体6内を滑らかに滑ることができる。] 図5 図6 [0025] 図6は、また、第2の位置Bと第1の位置Cを示している。これは、第1のFSO通信装置の温度補償デバイス10と本体6との間における距離の変化を説明するための助けになるであろう。第2の位置Bは、本体6の長手方向であって、コネクタ11の先端面の位置、すなわち接合部22の位置である。第1の位置Cは、レンズ9の所定の位置であり、ここでは、本体6の内部へ向かうレンズ9の内面の位置を示している。FSO通信装置は、その製作にどのような材料が用いられても、雰囲気温度が変わるといつでも、材料を伸縮することによるかなりの寸法変化を受ける。これは、第1のFSO通信装置の開示された実施形態のような簡単で安価な光学系を持つFSO通信装置にとって許容できるものではない。なぜならば、コネクタを第1の位置Cと第3の位置Aとの間にある第2の位置Bに固定する手段が、本体6内で本体自身より長さが短くなければならないからであり、これは、さもなければそのような手段が第1の光ファイバとレンズ9間の光信号を遮ることになるであろうという理由からである。収縮と膨張は、第3の位置Aと第1の位置Cの間の距離Zacを変え、第1の光ファイバのコネクタ11の端面が理想的な焦点からずれさせ、第1の光ファイバをレンズ9に関して前後に変位させる。その結果、光結合のエネルギーが浪費され、最終結果はFSOシステムの全体としての弾力性が低下し有用性が低下することになる。それ故に、第2の位置Bと第1の位置Cの間における距離Zbcは、可能な限り維持すべきである。それ故に、温度補償デバイス10は、本体6よりも大きな膨張係数をもつ材料で作られる。温度補償デバイス10と本体6との膨張係数の差は、温度補償デバイス10と本体6との物理的な寸法の差に正確に比例しているのが理想である。この発見の基礎は、線膨張係数を用いて長さ、面積、および体積の膨張の関係を導く熱膨張/収縮の線形性である。温度差ΔTを材料が相変化を受けない範囲で選べば、物体の長さの変化分ΔZは次式で与えられることを示すことができる。] 図6 [0026] ΔZ=Z0αΔT ここでZ0は加熱される前の物体の初期の長さであり、αは材料の線膨張係数である。] [0027] このように、温度補償デバイス10と本体6とは、同一の参照位置すなわち第3の位置Aに固定されている。本体6は、第3の参照位置Aと第1の参照位置C間の距離Zacを変えるような変化を受けるが、温度補償デバイス10が、第3の位置Aと第2の位置Bの間の距離Zabを変化させることで、第2の位置Bと第1の位置Cの間の距離Zbcを不変に保つようにする。温度補償デバイス10の膨張係数が本体6の膨張係数よりも大きい限り、そして好適には温度補償デバイス10の膨張係数と本体6の膨張係数との間の比率が第3の位置Aから第1の位置Cまでの本体の長さと第3の位置Aから第2の位置Bまでの温度補償デバイスの長さとの比率にできるだけ近い限り、温度補償デバイス10は、このように非常に精密で、かつ安価なデバイスであり、それは、高伝達率、受動的、かつ安価なFSO通信装置と、および、このように安価なFSO通信システムとが適当な条件下で動作することを可能にするものであり、広い温度範囲でその有用性と動作マージンを確保する。受動性ゆえに、第1に、制御及び駆動または埋め込み電子回路のためのさらなるデバイスを必要としないだけでなく、第1の光ファイバのコネクタ11の内部支持も温度補償デバイス10によって提供されるので、受動的補償デバイスはFSO通信装置の製造に大きな経費を追加するようなものではない。温度補償デバイス10は、簡単、かつ、線形変化においてミクロン・オーダの精度で、第1の光ファイバのコネクタ11の先端面とレンズ9との間のリアルタイム(実時間)での寸法調整を提供する。] [0028] 例えば、上記実施形態においては、本体6が、アルミニウム合金、例えば、(国際合金分類記号による)6000番台のアルミニウム合金の中のよく用いられる合金である鍛造アルミニウム合金6061を用いて作られてもよい。合金6061は、中程度から高程度の強度を持つ多目的の熱処理可能成形合金であり、いくつかの熱強化グレード、例えば、6061−O、6061−T4、6061−T6、6061−T651および6061−T42に製造されるのが普通である。線膨張係数は、線形熱膨張係数としても知られているが、典型的なアルミニウム合金6061では、2.35 × 10−5℃−1である。温度補償デバイスの製造に関しては、低温度でも良好な衝撃特性を持ち、非改質ポリプロピレン・ホモ重合体と比べて破壊時に伸びがほとんど増加しない熱可塑性ポリプロピレン共重合体のような重合体材料を用いることができる。言い換えれば、熱可塑性ポリプロピレン共重合体は、非改質ポリプロピレン・ホモ重合体と比べて比較的低い温度でより良い伸縮性を保持する。市販の相当品の共重合体の例は、ポリウレタン、ポリエーテルエステルおよび、例えば、エステイン(Estane)(登録商標)、ハイトレル(Hytrel)(登録商標)、ぺバックス(PEBAX)(登録商標)、ABSプラスチック、エスビーアール(SBR)、スチレン—イソプレン−スチレン(SIS)及びエチレンビニルアセテートのようなポリエーテルブロックアミドである。しかしながら、本発明の範囲は、本体の材料よりも大きな線膨張係数を持つ任意の材料を含むのは当然であり、非改質のポリプロピレン・ホモ重合体も含む。例えば、一般的には−40℃から120℃の範囲で固体の、熱可塑性ポリプロピレン共重合体とほぼ同じ熱膨張係数を持つすべての重合体はここに用いることができる。熱可塑性ポリプロピレン共重合体の典型的な線膨張係数は、10 × 10−5℃−1である。アルミニウム合金の本体で、図6における距離Zacが24℃で300mmの場合、デバイスの完全補償のためには、熱可塑性ポリプロピレン共重合体でできた温度補償デバイスの距離Zabは24℃で70.5mmでなければならない。異なる雰囲気温度に対する以下の4つの例は、上記の典型的な材料が用いられた場合の、本体6と温度補償デバイス10の膨張または収縮の3つの場合を示す。 ケースI:雰囲気温度 24℃(上記と同一) Zbc=Zac−Zab=300−70.5mm=229.5mm ケースII:雰囲気温度 50℃ ΔZac=Zac × α × ΔT=300mm × 2.35 × 10−5℃−1 × (50℃−24℃)=1.833mm ΔZab=Zab × α × ΔT=70.5mm × 10 × 10−5℃−1 × (50℃−24℃)=1.833mm Zbc=(Zac+ΔZac)−(Zab+ΔZab)=301.833−72.333=229.5mm ケースIII:雰囲気温度 0℃ ΔZac=Zac × α × ΔT=300mm × 2.35 × 10−5℃−1 × (0℃−24℃)=−1.692mm ΔZab=Zab × α × ΔT=70.5mm × 10 × 10−5℃−1 × (0℃−24℃)=−1.692mm Zbc=(Zac+ΔZac)−(Zab+ΔZab)=298.308−68.808=229.5mm ケースIV:雰囲気温度 −20℃ ΔZac=Zac × α × ΔT=300mm × 2.35 × 10−5℃−1 × (−20℃−24℃)=−3.102mm ΔZab=Zab × α × ΔT=70.5mm × 10 × 10−5℃−1 × (−20℃−24℃)=−3.102mm Zbc=(Zac+ΔZac)−(Zab+ΔZab)=296.898−67.398=229.5mm 熱可塑性ポリプロピレン共重合体のようなほぼ等方的な材料、すなわち全ての方向で均一な性質の材料の熱膨張係数は、固体の状態(−40℃から120℃)で温度とともに大きくは変化しない。] 図6 [0029] それゆえ、距離Zbcは上記の4つの場合に正確に同じである。上記の例はアルミニウム合金6061に関するものであるが、6000番台シリーズ、2000番台シリーズ、5000番台シリーズおよび7000番台シリーズのような他のアルミニウム合金およびスチールのような他の金属合金を本体6および筐体7として用いることもできる。] [0030] 本体6と温度補償デバイス10の間の空隙の寸法は、第1のFSO通信装置が動作するように構築された最高温度と最低温度に依存するのが好適である。例えば、アルミニウム合金6061でできた本体6内部では、線膨張係数が10 × 10−5℃−1であるコポリマー(共重合体)でできた温度補償デバイス10の外装面20は、温度範囲100℃に対して58mmである。これは、空隙がほぼ2.2mmであることを必要とする。好適には、温度補償デバイス10が本体6と同心円的状態を保ち、第1のFSO通信装置の位置合わせを保つためには、空隙が大きければ大きいほど、O−リング27の断面直径は大きくすべきである。面積熱膨張及び体積熱膨張も有るように、膨張係数は3次元的な熱力学的性質であるので、外装面の直径は本体6の内壁44の直径より小さくすべきである。金属とポリマー(重合体)とは通常は等方的であるので、熱膨張係数は単一の次元(寸法)にそって定義されるだけでよい。] [0031] 搭載用支持台12が設置され、第1のFSO通信装置が調整されると、第1のFSO通信装置の正しい方向を、第1のFSO通信装置に(ここでは第1のFSO通信装置の裏端面に)備えられた微調整機構29の助けを借りてより正確に調整することができる。これについて図7と関連してより詳しく説明する。微調整機構29は、2つのシャフト30と31を備え、これらは互いに垂直で、第1のFSO通信装置の長手中心軸にほぼ垂直に位置付けられている。一方のシャフト(図示の実施形態では一般的には垂直シャフト30であるが、)は、筐体7に2か所で軸止めされている。垂直シャフト30を妨害しないような、第1のFSO通信装置の長手方向の或る距離で、一般的には水平シャフト31が本体6に2つの位置で軸止めされていて、筐体7内の対応する孔を通して筐体7から外に半径方向に飛び出している。シャフト30、31はこのように、そのそれぞれの長手軸の周りに回転ができる。シャフトの搭載を容易にするために(そして保守サービス時には取り外しを容易にするために)、筐体7は、L字型細長隙間32を備えていて、その中へ垂直シャフト30が導入される。本体6は、一般的には水平シャフト31の設置を容易にするために(不図示の)2つの直線細長隙間を有してもよい。微調整機構29は、また、筐体7の内部に搭載された、少なくとも1つのコイルばね33と34をシャフト30、31のそれぞれに備え、2つの垂直な、ねじが貫通する貫通孔を備えた、固体ブロックの形状の調整要素35を備える。シャフト30、31は、ねじの貫通部分36、37を備え、これらは調整要素35内の、対応するねじが貫通する貫通孔と係合する。シャフトを回転することにより、筐体7と本体6間の相互位置関係が調整される。コイルばね33、34は、シャフト30、31のそれぞれのねじ溝が掘られた部分の一部の周囲に搭載され、一端はそれぞれ筐体7と本体6の内壁とばね接触している。コイルばね33、34の他端は、調整要素35とばね仕掛けにより接触している。これは主に、シャフト30、31のねじ溝部分36、37のねじ溝と調整要素35の対応するねじ溝を切られた貫通孔との間の係合をよりよくすることにより、調整要素35の位置の安定性をよりよくするためである。換言すれば、コイルばねは、シャフト30、31と調整要素35の間の緩みを低減し、最終調整後は第1のFSO通信装置がより正確に調整され「自動ロック」できるようにする。2つのシャフト30、31のそれぞれは、また、最終調整を行う人が掴めるような少なくとも1つの把持部分38と39を備える。図7に示した実施形態では、これらの把持部分38と39は、のこぎり歯状にするか、溝が掘られているか、及び/又は小さな丸い突起/膨らみが設けられていることにより、また、各シャフト30と31の端部に位置付けられていることによりシャフト30と31の周りを掴みやすくするようになっている。把持部分38と39は、もちろん、他の実施形態ではシャフト30と31の他の位置に位置付けされていてもよい。代替としては、または、のこぎり歯状や、溝および膨らみに加えて、把持部分は、第1のFSO通信装置の位置を合わせるときに、把持部分の周りの握り力を増加させるような、ゴムまたは他の材料が備えられていてもよい。2軸性ジンバル装置40は、筐体7に対する管状の本体6を任意の角度または方向にする動きを可能にし、シャフトが別々に調整されるときにシャフト30、31間に引き起こされる動きの影響・効果を最小にする。] 図7 [0032] 図8は、第1のFSO通信装置の他の図を示すが、実施形態のさらなる説明のために第1のFSO通信装置のいくつかの部分は取り外してある。第1のFSO通信装置は、ここでは、第1のFSO通信装置と第2のFSO通信装置4aとの位置合わせの作業を改善するために用いられる望遠照準器42(図10を参照)と適合させるための、選択肢である搭載用レール41も備える。搭載用レール41は、本体6の先端面に位置付けられるのが適当である。第1のFSO通信装置は、また、第1のFSO通信装置を、例えば、雨、霰、および他の気象学的影響やレンズ9の先端に設けられることがある鳥の巣からより良く保護するために、オプションとしての保護デバイス60を備える。プロテクター(保護)デバイス60は、保護デバイス60が第1のFSO通信装置の重さをさらに大きく増加させることがないように、プラスチック、アルミニウム、または同様の軽い材料で形成されている。このようにして、固定用支持台13を含むFSOシステムへの有害な振動や突風を避けることができるであろう。図9により詳しく示されるように、この実施形態における保護デバイスは、3つのパーツを備える。3つあるパーツのうちの1つは、上部の半円筒部分と真っ直ぐな側面部分を形成する、一般的にはU字型断面をもつ細長い遮蔽部61である。細長い遮蔽部61は、本体6を部分的に覆うが、本体6の先端面から外側に突出していて、レンズ9のキャップを形成する。遮蔽部61の上部の半円筒部分は、保護デバイス60と第1のFSO通信装置の、または、(第1のFSO通信装置の下に位置するならば、)例えば、固定用支持台13の、その上面に水や埃が溜まるのを防止する助けとなる。保護デバイスの第2のパーツは、本体6の周りに搭載できるようにした、本体6の外壁とぴったり合う円形孔を備えた端面シート62である。保護デバイス60の第3のパーツはつば付き板63である。つば付き板63は、つば付き板63を端面シート62と遮蔽部61に搭載するための長方形の底面64に垂直な搭載用の第1ないし第3のフラップ(たれ板)を有する。第4のたれ板65は、長方形の底面64の前面から外側かつ上方に飛び出していて、この実施形態では長方形の底面64と15°の角度を形成している。第4のたれ板65は、レンズ前方における雨の跳ね返りや鳥の巣から保護するためである。保護デバイス60の3つのパーツの全ては、一緒になって搭載され、端面シート62を通して本体6に固定されるが、保護デバイス60を本体6にしっかりと固定するための締め付け装置が備わっていてもよい。3つあるパーツの相互の、および本体6への取り付けは、容易に、かつ、第1のFSO通信装置の位置合わせに影響を与える危険性を少なくして保護デバイス60を引き抜き、再設置することが一人でできるように、ボルトとナットで、または自己ねじ込みボルトで行うのが適当である。図8と10に見られるように、設置時は、遮蔽部61が搭載用レール41の上部に位置付けられ、望遠鏡が搭載用レール41上に搭載される前には遮蔽部61が取り除かれねばならない。しかしながら、開示された実施形態は、端面シート62とつば付き板63を、望遠照準器42を設置する期間でも尚、本体6に固定させておくこともできる。] 図10 図8 図9 [0033] どの図にも示されていないが、長方形の底面64には、保護デバイス60によって囲まれた面積内に入ってきた水および泥粒が保護デバイスの内部から消え去るようにする1つ以上の排水口が備えられていてもよい。また、雪と霰がつば付き板63上に残るのを避けるために、つば付き板は、電気ヒータ回路によって加熱されてもよい。電気ヒータ回路は、雰囲気温度が本体6と温度補償デバイス10の膨張係数が十分に一定ではないような或る温度以下である場合に、FSO通信装置への負の影響の可能性を補償するために、本体を温める目的で用いることもできよう。この実施形態における角度は、底面64と第4のたれ板65の間で15°であるが、本体6に対する保護デバイス60の一般的な寸法に依存して、他の角度を用いることも好適である。また、本発明の他の実施形態では、搭載用レール41は、第1のFSO通信装置における他の位置に配置されてもよい。例えば、少し精度が落ちるが、筐体7上に、または、保護デバイス60でカバーされない条件で本体6のより後ろの位置に配置されてもよい。] [0034] 図10は、搭載用支持台12を経由して、鋼鉄製の棒、パイプまたは鉄製の導管の形態をした固定用支持台13上に搭載された第1のFSO通信装置を示す。搭載用支持台12が取り付けられる棒/パイプ/導管の外側の寸法は、前もって適当に設計されている。また、調整可能な開口を持つ大面積の視準器の形態をした視準器43が、図10に示されている。視準器43は、可視波長のレーザを持つ位置合わせシステムとして用いられ、平行光線を第2のFSO通信装置4aへ送るために用いられる。第2のFSO通信装置4aに対する本体6の位置合わせを助けるために、第2のFSO通信装置4aに設置した視準器も同様に平行光線のビームを、レンズ9を経由して第1の光ファイバへ送ることができる。図示の実施形態では、視準器43はレンズ9の側に設置され、保護デバイス60によって雨などに対してこれも保護されるように配置されることが好適である。] 図10 [0035] 安価で、受動的で、設置が容易な本発明の実施形態を記述してきたが、さらに付け加えるべきことは、本発明による温度補償デバイスが、FSO通信装置の自動位置合わせをするための能動的な制御手段を備えたFSO通信装置内に設置されてもよいことは当然である。] [0036] さて、上記の実施形態による受動のFSO通信装置の設置と位置合わせの簡単なやりかたを提供する方法が図11と関連して記述される。] 図11 [0037] 第1のステップS1は、ナットとおよびそれと対応する第1の組の留め金15および第3の留め金16との助けを借りて、固定用支持台13上に搭載用支持台12を搭載する工程と、搭載用支持台12上に第1のFSO通信装置を固定する工程を含む。第1のステップS1の前に、第1のFSO通信装置は、選択肢である保護デバイス60を含んで前もって組み立てられていてもよい。しかしながら、望遠照準器42と保護デバイス60が(以下の)第2のステップS2で用いられ、搭載用レール41が図8に示すように本体6の先端面の近くに位置付けられている場合は、端面シート62とつば付き板63とは第1のFSO通信装置の組み立て工程において取り付けられてもよいが、遮蔽部61はまだ搭載されない。] 図8 [0038] 第2のステップS2は、第3の留め金16を固定用支持台13の周りに最終的に固く締める前に行なわれる工程であり、すでに設置された第2のFSO通信装置4aの位置との、第1のFSO通信装置の手動、粗く大雑把にアライメントを粗調整する第1の位置合わせ工程を含む。1つの実施形態では、選択肢である望遠照準器42が搭載用レール41に接続される。望遠照準器42を通して、第1のFSO通信装置と通信する第2のFSO通信装置4aに対する位置合わせがチェックされ、第1のFSO通信装置が望遠照準器42の接眼レンズの十字線の助けを借りて十字線の中央に位置付けられるように設定することができる。その後、第3の留め金16が、固定用支持台13の周りに最終的に締め付けられる。微調整の前に、第2の位置合わせが第3のステップS3でなされる。第1および/または第2のステップに対応するステップは、第2のFSO通信装置4aに対しても行うことができる。] [0039] 望遠照準器42がすでに第1のFSO通信装置に取り付けられている場合における第3のステップS3の1つの実施形態では、第2の位置合わせが、望遠照準器42を通した観察の助けを借りて行われる。微調整機構29のシャフト30と31を回転することによって、第2のFSO通信装置の対応するレンズ9の中心に関して第1のFSO通信装置の微調整を行うことができる。微調整が行われると、望遠照準器42は取り外され、第1のFSO通信装置に対する第2のFSO通信装置の位置合わせの際に再び用いられる。第3のステップS3の後は、第4のステップS4が行われる。] [0040] 第3のステップS3についての第2の実施形態では、望遠照準器は使われないか存在しない。代わりに、視準器43のような可視スペクトル域の光を発するレーザまたはLEDシステムが、光の受光と送信のために、第1と第2のFSO通信装置の任意の1つに設置することができる。レーザまたはLEDシステムによって形成された光ビームが対向するFSO通信装置のどこに当たるかを見ることによって、光のビームが対向するFSO通信装置の上のレンズの中心に当たるように、微調整機構29によって精密設定が行われる。遮蔽部61が第1のFSO通信装置上に取り付けられていない場合は、第4のステップS4が行われる。] [0041] 第3のステップS3の第3の実施形態は、一般的には、第3のステップの上記2つの実施形態よりも専門知識をより多く必要とする。この実施形態では、光信号は、第2のFSO通信装置4aから第1のFSO通信装置へ、またはその逆に送られ、そこで、自由空間リンクの対向する端点で、CCD(電荷結合デバイス)、直交セル検出器またはフォトダイオードを含むデバイスのようなこの分野では公知の専用測定デバイス/ユニットの助けを借りて、またはさらには他のFSO通信装置自身によって、他のFSO通信装置(例えば、第1のFSO通信装置)によって受けた光信号のレベルを監視する。後者の手段は、第1と第2のFSO通信装置の片方または両者が受信信号カウンタを備えている場合に行うことができる。微調整機構29の助けを借りて、最高のパワーが受かる光信号の方向を調整することによって、微調位置合わせを行うことができる。遮蔽部61がまだ設置されていない場合は、第4のステップS4が行われる。送られる光信号は、視準器43によって送られる可視光信号である。] [0042] 本方法は、望遠照準器42、レーザ/LEDシステム、および光信号測定の全てのまたは任意の組み合わせを含む微調整を行うステップのような、第3のステップS3の上記3つの実施形態の代替となる、任意の実際的な方法をも含むことは当然である。] [0043] 第4のステップS4では、遮蔽部61が、第1のFSO通信装置上に搭載される。遮蔽部61が必要とは考えられない場合や、遮蔽部61が第1のステップS1の前にすでに搭載されている場合は、第4のステップS4は不要である。] [0044] 本方法に関する上記の説明から理解されるように、開示された実施形態による受動的FSO通信装置の利用と設置は、このようなFSO通信装置を設置するために専門家を必要としない「プラグアンドプレイ(設置してすぐに動作する)」構成を形成する。末端利用者が、FSO通信装置を設置して位置合わせをすることが完全にできるはずである。] [0045] どの図面にも示されていないが、本発明の他の実施形態は、管状の本体と長方形または正方形の断面面積をもつ筐体、または非管状の実施形態を含んでもよい。温度補償デバイスは、図にて開示したものとは別の形状、例えば、コネクタの挿入用の貫通孔を持つ場合及び持たない場合の長方形の平行六面体のような形状を持っていてもよい。]
权利要求:
請求項1 光空間伝送通信装置であって、本体と、前記本体において第1の位置に設置された少なくとも1つのレンズと、前記レンズから所定距離離れた第2の位置に、光ファイバ用のコネクタを取り付けるために配置された取り付け手段とを備え、前記レンズは、前記光空間伝送通信装置に対して送信されてきた光線を前記光ファイバに対して集光するレンズであり、前記取り付け手段は、温度補償デバイスであり、前記温度補償デバイスの膨張係数は、前記本体の膨張係数よりも大きく、前記温度補償デバイスは、第3の位置において前記本体に取り付けられており、前記温度補償デバイスは、温度の変化に応じて前記温度補償デバイスを膨張または収縮させるようにするための自由端を備え、前記第2の位置は、前記第3の位置と前記第1の位置との間に存在することを特徴とする光空間伝送通信装置。 請求項2 前記本体は、円筒形状をしており、前記レンズと前記温度補償デバイスとが前記本体の内部に取り付けられていることを特徴とする請求項1に記載の光空間伝送通信装置。 請求項3 前記温度補償デバイスは、管状かつ一体成形された構成部品であり、円筒形状の外装と接合部とを備え、前記円筒形状の外装の直径は、前記本体の内面側の直径よりも小さく、前記接合部は、前記温度補償デバイスの内部において前記コネクタを接合するように構成されていることを特徴とする請求項2に記載の光空間伝送通信装置。 請求項4 前記外装は、Oリングを保持するための少なくとも1つの円周溝を備えることを特徴とする請求項3に記載の光空間伝送通信装置。 請求項5 前記光空間伝送通信装置の方向を調整する手動微調整機構を備えることを特徴とする請求項1ないし4のいずれか1項に記載の光空間伝送通信装置。 請求項6 降雨から少なくとも部分的に前記レンズを保護する保護デバイスを備えることを特徴とする請求項1ないし5のいずれか1項に記載の光空間伝送通信装置。 請求項7 望遠照準器を搭載するために前記本体に設けられた搭載用レールを備えることを特徴とする請求項1ないし6のいずれか1項に記載の光空間伝送通信装置。 請求項8 前記本体は、アルミニウム合金により形成されており、前記温度補償デバイスは、ポリマー素材により形成されていることを特徴とする請求項1ないし7のいずれか1項に記載の光空間伝送通信装置。 請求項9 前記本体は、6000番台のアルミニウム合金により形成されており、前記温度補償デバイスは、ポリプロピレンにより形成されていることを特徴とする請求項8に記載の光空間伝送通信装置。 請求項10 前記本体は、6061番のアルミニウム合金により形成されており、前記温度補償デバイスは、ポリプロピレン共重合体により形成されていることを特徴とする請求項9に記載の光空間伝送通信装置。 請求項11 前記本体の膨張係数と前記温度補償デバイスの膨張係数との比は、前記第3の位置から前記第2の位置までの距離と前記第3の位置から前記第1の位置までの距離との比と実質的に等しいことを特徴とする請求項1ないし10のいずれか1項に記載の光空間伝送通信装置。 請求項12 前記光空間伝送通信装置は受動型であることを特徴とする請求項1ないし11のいずれか1項に記載の光空間伝送通信装置。
类似技术:
公开号 | 公开日 | 专利标题 US6456261B1|2002-09-24|Head/helmet mounted passive and active infrared imaging system with/without parallax DE19736276B4|2006-07-27|Optisches Pyrometer für Gasturbinen US7435898B2|2008-10-14|Solar energy utilization unit and solar energy utilization system CA1261407A|1989-09-26|Fiber optic beam delivery system for high-power laser US5243681A|1993-09-07|Aperture disk attenuator for laser diode connector DE3403082C2|1992-08-06| EP0080566B1|1986-02-19|Compact, high cold shield efficiency optical system US6307657B1|2001-10-23|Optomechanical platform US7784192B2|2010-08-31|SWIR vision and illumination devices AU2007286404B2|2010-08-26|Laser scanner KR101270744B1|2013-06-03|양방향 광송수신 모듈 CA1253381A|1989-05-02|Telescopic sight with erector lens focus adjustment US7903706B2|2011-03-08|Compact, thermally stable multi-laser engine US20140049643A1|2014-02-20|Gimbal systems providing high-precision imaging capabilities in a compact form-factor US5836694A|1998-11-17|Laser and scope aiming mechanism for a hand-held temperature measuring unit CN1272646C|2006-08-30|用于10gb/s收发机的高频发射器和检测器组装方案 US5631987A|1997-05-20|Low cost, mode-field matched, high performance laser transmitter optical subassembly US6866391B2|2005-03-15|Thermal condensate reducer for optical devices US9800332B2|2017-10-24|Acquisition, tracking, and pointing apparatus for free space optical communications with moving focal plane array US7072543B2|2006-07-04|Extended source transmitter for free space optical communication systems KR0151717B1|1999-04-15|광전송 섬유와 반도체 레이저 다이오드 사이에 커플링을 갖는 광전자 장치 CA2574702C|2010-10-19|Adjustable focus connector with spring action AU758244B2|2003-03-20|Fiber optic ceiling supported surgical task light system with optical commutator and manual zoom lens CN102620688B|2014-03-12|多功能光轴平行性校正仪及其标定方法 US6504634B1|2003-01-07|System and method for improved pointing accuracy
同族专利:
公开号 | 公开日 US8577223B2|2013-11-05| US20110026933A1|2011-02-03| EP2232739A1|2010-09-29| BRPI0722344A2|2014-03-18| CN101919183A|2010-12-15| MX2010006304A|2011-09-27| JP5452502B2|2014-03-26| WO2009082789A1|2009-07-09|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US4236790A|1978-05-15|1980-12-02|Smith Ronald D|Temperature compensated positioning device| JPS5915206A|1982-07-17|1984-01-26|Canon Inc|Laser unit| JPS5981936A|1982-09-24|1984-05-11|Int Standard Electric Corp|Optical data link| JP2000111816A|1998-10-06|2000-04-21|Trw Inc|能動整合フォトニクス組立体|WO2017212570A1|2016-06-08|2017-12-14|三菱電機株式会社|光アンテナ装置|US3828185A|1960-12-01|1974-08-06|Singer Co|Modulated light communication system| US7120363B2|2002-12-20|2006-10-10|Lightpointe Communications, Inc.|Method and apparatus for maintaining optical alignment for free-space optical communication|US8942562B2|2011-05-31|2015-01-27|A Optix Technologies, Inc.|Integrated commercial communications network using radio frequency and free space optical data communication| CN103067088A|2011-10-24|2013-04-24|瑞特技术有限公司|用于室内无线光学链路的方法和系统| US10778334B2|2014-06-06|2020-09-15|Vivint, Inc.|Fiber/wireless hybrid solution| MX2019009232A|2017-02-02|2019-12-02|Ppc Broadband Fiber Ltd|FIBER OPTIC CONNECTOR.|
法律状态:
2010-11-27| A621| Written request for application examination|Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101126 | 2012-04-03| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120402 | 2013-02-05| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130204 | 2013-05-08| A601| Written request for extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20130507 | 2013-05-15| A602| Written permission of extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20130514 | 2013-06-01| A601| Written request for extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20130531 | 2013-06-10| A602| Written permission of extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20130607 | 2013-06-29| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130628 | 2013-11-25| TRDD| Decision of grant or rejection written| 2013-12-02| A01| Written decision to grant a patent or to grant a registration (utility model)|Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131129 | 2014-01-09| A61| First payment of annual fees (during grant procedure)|Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131227 | 2014-01-10| R150| Certificate of patent or registration of utility model|Free format text: JAPANESE INTERMEDIATE CODE: R150 | 2017-01-10| LAPS| Cancellation because of no payment of annual fees|
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|